
Random networks tossing biased coins

F. Bassetti,1,* M. Cosentino Lagomarsino,2,3,† B. Bassetti,3,4,‡ and P. Jona5

1Università degli Studi di Pavia, Dipartimento Matematica, Pavia, Italy
2UMR 168/Institut Curie, 26 rue d’Ulm 75005 Paris, France

3Università degli Studi di Milano, Dipartimento Fisica, Via Celoria 16, 20133 Milano, Italy
4I.N.F.N., Milano, Italy

5Politecnico di Milano, Dipartimento Fisica, Pza Leonardo Da Vinci 32, 20133 Milano, Italy
�Received 2 April 2006; revised manuscript received 18 February 2007; published 14 May 2007�

In statistical mechanical investigations of complex networks, it is useful to employ random graph ensembles
as null models to compare with experimental realizations. Motivated by transcription networks, we present
here a simple way to generate an ensemble of random directed graphs with asymptotically, scale-free out-
degree and compact in-degree. Entries in each row of the adjacency matrix are set to 0 or 1 according to the
toss of a biased coin, with a chosen probability distribution for the biases. This defines a quick and simple
algorithm, which yields good results already for graphs of size n�100. Perhaps more importantly, many of the
relevant observables are accessible analytically, improving upon previous estimates for similar graphs. The
technique is easily generalizable to different kinds of graphs.
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I. INTRODUCTION

In our investigation concerning transcription networks,
we came across a simple and effective way to generate a
random ensemble of directed graphs having similar features
as the experimental ones. Transcription networks are directed
graphs that represent regulatory interactions between genes.
Specifically, the link a→b exists if the protein coded by
gene a affects the transcription of gene b in mRNA form by
binding along DNA in a site upstream of its coding region
�1�. For a few organisms, such as E. coli and S. cerevisiae, a
significant fraction of the wiring diagram of this network is
known �2–5�. The hope is to study these graphs, together
with the available information on the genes and the physics
and chemistry of their interactions, to infer information on
the large-scale architecture and evolution of gene regulation
in living systems. In this program, the simplest approach to
take is to study the topology of the interaction networks. For
instance, order parameters such as the connectivity and the
clustering coefficient have been considered �3�.

To assess a topological feature of a network, one typically
generates so called “randomized counterparts” of the original
data set as a null model—that is, an ensemble of random
networks which bare some resemblance to the original. The
idea behind it is to establish when and to what extent the
observed biological topology, and thus loosely the living sys-
tem under examination, deviates from the “typical case” sta-
tistics of the null ensemble. For example, a topological fea-
ture that has led to relevant biological findings, in particular
for transcription, is the occurrence of small subgraphs—or
“network motifs” �6–10�. The choice of what feature to con-
serve �or not� in the randomized counterpart is quite delicate
and depends on specific considerations on the system �11�.

The null ensemble used to discover motifs usually conserves
the degree sequences of the original network—that is, the
number of regulators and targets of each node. The observed
degree sequences for the known transcription networks fol-
low a scale-free distribution for the out-degree, with expo-
nent between 1 and 2, while being Poissonian in the in-
degree �3,14�. Motifs are then interpreted as elementary
circuitlike building blocks and have been shown in many
cases to work independently �15�. In connection with this
line of research, it is interesting to study random ensembles
of graphs with probability distributions for the degree se-
quences that are similar to those observed experimentally,
with the objective of characterizing theoretically some rel-
evant topological observables, such as the subgraph distribu-
tions �11,16�. Here, we describe a simple, and fast, algorithm
that performs this task by tossing coins with prescribed ran-
dom biases �Fig. 1�. Differently from more sophisticated
techniques available in the literature �11,17–20�, our method
is not designed to conserve a degree sequence, but rather as
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FIG. 1. �Color online� Example of a graph generated with our
algorithm with n=40, �=2.8, and �=1. Nodes with more than ten
outgoing edges are larger �red online�.
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a general random graph model, which, in particular, can be
used to generate graphs with degree distributions that agree
with the observed power-law-distributed out-degrees and
compact in-degrees �11�. To this aim, the ensemble will be
generated by a parametric model, where the adjustable pa-
rameters can be used for fits of real data sets. Note that, with
the weaker constraint on the degree distribution that we have
chosen, it would be very inconvenient to generate the en-
semble throwing degree sequences a priori from the given
distributions and then use an algorithm designed for fixed
degree sequences, which is necessarily more costly. We will
see that, because of the extreme simplicity of our formula-
tion, some observables can be computed analytically rather
than estimated as in Ref. �11�. After introducing the algo-
rithm and showing that the ensemble has the required fea-
tures, we will compute the number of some observables that
are relevant for transcription, such as triangular subgraphs.

II. ALGORITHM

Any directed graph Gn with n nodes is completely de-
scribed by its adjacency matrix A�Gn�= �xi,j

�n��i,j=1,. . .,n, where
xi,j

�n�=1 if there is a directed edge i→ j and 0 otherwise. In-
stead of square matrices, one may also consider rectangular
matrices with a prescription on the scaling of the rows with
the columns. In what follows we will deal with rectangular
matrices mn�n with mn�n. As we will see, this is particu-
larly useful for networks with power-law degree distributions
having an exponent equal or lower than 2 �for which the
average diverges�, to keep the asymptotics well behaved. In
the context of transcription networks, the hypothesis of rect-
angularity is well motivated by the fact that typically only a
subset of mn nodes encodes for transcription factors �namely,
they have outgoing edges�. Thus, in an mn�n matrix, the
first mn columns will contain the incoming links to the tran-
scription factors and the next n−mn columns will correspond
to non-transcription-factor encoding genes. Note that in gen-
eral nodes that send out edges are also receiving edges �Fig.
2�.

Our model ensemble can be defined by the following gen-
erative algorithm. For each row of A, �i� throw a bias � from
a prescribed probability distribution �n and �ii� set the row
elements of A to be 0 or 1 according to the toss of a coin with
bias �. Since each row is thrown independently, the resulting
probability law is

P�xi,j
�n� = ei,j,i = 1, . . . ,mn, j = 1, . . . ,n�

= �
i=1

mn 	
�0,1�

�i

j=1

n ei,j�1 − �i�n−
j=1
n ei,j�n�d�i� , �1�

where ei,j � �0,1�, i=1, . . . ,mn, j=1, . . .n. Note that the row
elements are not independent �21�. Equation �1� is a general
probability distribution based on two symmetries: �a� the fact
that a node that regulates other ones is independent from the
nodes regulated by other genes and �b� the identity of the
regulated nodes is unimportant and what matters is their
number only. The two symmetries can be summarized by
saying that the in-degree and out-degree are uncorrelated
�22,23�. It is worth noticing that our model could also be
seen as a special case of a directed graph variant of the
so-called hidden-variable models, introduced in �24�; see
also �25,26�. In this very general class of undirected random
graphs the quantity � is interpreted as the “fitness” of each
vertex and the emphasis is on the problem of how power
laws may emerge “naturally” in interaction networks. To
complete our model, one has to specify the choice for �n,
which determines the behavior of the graph ensemble. We
choose the two-parameter distribution

�n�d�� = Z−1�−����/n,1����d� , �2�

where �	0 and �	1 are free parameters, ���/n,1� is the
characteristic function of the interval �� /n ,1�, taking the
value 1 inside the interval and 0 everywhere else, and

Zª
�n/���−1−1

�−1 is the normalization constant. In simple words,
Eq. �2� defines the probability to take a coin with a certain
bias �, which is connected to the out-degree of the corre-
sponding node. As we will see, the function �−� gives a
power-law tail to the out-degree. Conversely, the cutoff on �
defined by � poses a constraint on the number of low-out-
degree nodes and will be used to control the in-degree dis-
tribution. In concrete applications at finite sizes, it might be
useful to introduce also an upper cutoff on �n—that is,

�n�d�� 
 Z−1�−����/n,1−�/n����d� . �3�

This does not affect the asymptotic results given below but
gives more flexibility to the model. Hence, in what follows,
with the exception of Sec. V, we shall take �=0.

III. RESULTS

An example of a graph generated with our algorithm is
shown in Fig. 1. The algorithm is quite efficient: its compu-
tational cost is determined by the number of coin tosses
�each of which takes the same amount of operations� and
thus scales like n2. Our FORTRAN 77 implementation running
under Linux on an AMD Athlon 64 X2 3800+ PC, generates
a graph with n=104 in about 3.5 s. Many observables can be
computed knowing the probability of the link i→ j, �n

ªP�xi,j
�n�=1�=��0,1���n�d��. By simple calculation from Eqs.

�1� and �2�, we get

1

2

34 5

1 2 3 4 5
1 0 1 1 0 0
2 0 0 0 1 1

FIG. 2. �Color online� Example of a rectangular matrix and its
associated graph. Nodes 1 and 2 represent transcription factors and
can regulate any other node. Nodes 3–5 are targets and only receive
incoming links. In this case mn=2/5n.
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�n =�
�� − 1���−1

�2 − ��n�−1

1 − �

n
�2−�

1 − �

n
��−1 if 1  �  2,

�

n − �
�ln n − ln �� if � = 2,

�� − 1�
�� − 2�

 n

�
��−2

− 1

 n

�
��−1

− 1

if � 	 2.
�

Note that the formulas above for �	2 and �2 are identi-
cal, but have been recast to show the leading terms in the
scaling. Hence �n, for n→�, scales as 1 /n�−1 if 1�2,
as �ln n� /n if �=2 and as 1/n if �	2. Note that �n is di-
rectly related to the mean number of links in the network,
which can thus be controlled through the parametric depen-
dence of this quantity. We did not prove anything regarding
the emergence of a giant component. The graphs we gener-
ated numerically seem to have a large component. On the
other hand, analytically, it is not hard to see that probability
that a graph Gn generated with our technique has only one
connected component goes to zero as n diverges.

A. Degree distributions

The variable Zmn,jª
i=1
mn xi,j

�n� represents the in-degree of
the jth node in the random graph, while Sn,iª
 j=1

n xi,j
�n� repre-

sents the out-degree of the ith node �1� i�mn�. Clearly, the
mean degrees are equal to mn�n and n�n, respectively. To
access the degree distributions, one has to compute P�Sn,i

=k�= � n
k

���0,1��
k�1−��n−k�n�d�� and P�Zmn,j =k�= � mn

k
��n

k�1
−�n�mn−k.

Let us concentrate first on the out-degree. An evaluation
of its distribution yields the following asymptotic law for n
→� for any �	0 and �	1:

P�Sn,j = k� � p�,��k� =
��−1�� − 1�

k!
	

�

+�

tk−�e−tdt .

It is easy to show that p�,��k� has a power-law tail. Indeed, if

k	�, p�,��k�=��−1��−1����k+1−��

��k+1� − 1
��k+1��0

�tk−�e−tdt�
�where � indicates the gamma function�. Thus, since
��k+1−��

��k+1� � 1
k� , one concludes that

p�,��k� =
1

k� ���−1�� − 1� + o�1�� .

Figure 3 shows the degree distributions of numerically gen-
erated examples for n=400. In practice, already at n�100
one gets a very marked power law in the tail of the out-
degree distribution. Considering now the in-degree, since its
behavior is determined by �n, one has to distinguish among
the different possible scalings for this quantity. The simplest
case is �	2, where for mn= ��n� (� being any constant in �0,
1� and �x� being the integer part of x) and for n→�, using

the Poissonian approximation of a binomial distribution, it is

immediate to show that P�Zmn,j =k�� e−��k

k! , with �=
����−1�

��−2� .

Things are slightly more complicated for ��2. Here, essen-
tially because of the scaling for �n in the limit n→�, the
in-degree distribution diverges if one chooses mn= ��n�.
Thus, to obtain a well-behaved asymptotic distribution, one
has to compensate more strongly for the scaling of �n with
the number of rows of A. For �=2, the necessary choice is
mn= ��n / ln n� rows, and for 1�2 one has to take mn

= ��n�−1� rows. With these prescriptions, the in-degree distri-
bution is asymptotically Poisson and has the form e−��k

k! with
�=�� or �=���−1 �−1

2−� for �=2 and 1�2, respectively.
In other words, asking for a degree distribution that brings to
an out-degree having a power-law tail with divergent mean
���2� poses a heavy constraint on the number of regulator
nodes �the rows of the matrix�. On the other hand, for the
purpose of generating square �n�n� matrices at finite n with
��2 and compact in-degree, this issue is not so important.
A suitable choice of the parameter � �see Fig. 3� can solve
the problem. In what follows we will discuss mainly the case
of square matrices.

B. Subgraphs

The simple structure of the random graphs generated by
our algorithm makes it possible to compute analytically the
mean value of the number of subgraphs of a given shape
contained in the graph. Consider a subgraph H, with k nodes
and m edges—that is, the set of ordered pairs of nodes H
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FIG. 3. �Color online� Degree distributions �in logarithmic
scale� of two graphs generated with our algorithm. The two panels
correspond to graphs having n=400, square adjacency matrices, and
different values of the parameters. Top: �=2.8, �=1. Bottom: �
=1.8, �=0.2. To obtain a compact in-degree distribution in the case
of ��2 one has to supply smaller values of �. The dashed lines are
power laws with exponent �.
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= �i1→ i1,1 , . . . , i1→ i1,m1
, i2→ i2,1 , . . . , ik→ ik,1 , . . . , ik→ ik,mk

�,
where 
i=1

k mi=m. For example, i1→ i2 , i2→ i3 , i3→ i1 de-
notes a “feedback loop” �fbl�, or a 3-cycle. Now, if Gn is a
random graph with n nodes generated by our algorithm, the
probability to observe H as a subgraph of Gn can be written
as

P�H � Gn� = 	
�0,1�

�1
m1��d�1� ¯ 	

�0,1�
�k

mk�n�d�k� .

To compute the mean of the number NH�Gn� of subgraphs
isomorphic to H one also has to consider the quantity N�H�
of subgraphs isomorphic to H contained in the complete
graph with n nodes. The desired average is then �NH�Gn��
=N�H�P�H�Gn� �where �¯�� denotes the mean�. Things are
slightly more complicated for rectangular matrices because
in the evaluation of N�H� one needs to take into consider-
ation also the constrains given by the fact that only mn nodes
can have out edges.

As an example, we evaluate now, in the case of square
matrices, the mean number of feedback loops versus feedfor-
ward loops, which play an important role for transcription
�15�. A feedforward loop �ffl� is a triangle with the form i1
→ i2→ i3, i1→ i3. It is found to be a motif in known tran-
scription networks and identified with the function of persis-
tence filter or amplifier. Conversely, feedback loops �which
in principle could form switches and oscillators� are usually
not found in transcription networks �7,27�. Following the
procedure described above, one gets �Nfbl�Gn��=2� n

3
��n

3 �this
holds also for k-cycles, with k in place of 3�. Once more, this
can be evaluated analytically with straightforward calcula-
tions. As it depends only on the behavior of �n, its scaling
for large n easily follows. The evaluation of feedforward
loops is slightly more complicated. In general,

�Nffl�Gn�� = 6n

3
�	

�0,1�
�2�n�d��	

�0,1�
��n�d�� ,

and hence, under Eq. �2�,

�Nffl�Gn�� = 6n

3
� �� − 1�2

��n/���−1 − 1�2	
�/n

1

�2−�d�	
�/n

1

�1−�d� .

Note that the finite-n formulas above can be computed ex-
plicitly and so does their scaling for finite sizes. In Appendix
A, we spell out the example of ffls to exemplify this point.

In Fig. 4, we report a comparison of the exact calculation
of some triangular subgraphs with results obtained from nu-
merical evaluation. The agreement between the analytical ex-
pressions and the numerics is perfect. Having analytically
exact expressions for any system size can be an advantage
with respect to models where only asymptotically exact ex-
pressions are available, especially thinking that many con-
crete datasets have relatively small sizes. Moreover, it is pos-
sible to compute analytically the standard deviation of the
number of subgraphs. For example, we considered again the
number of feedback loops and feedforward loops. The most
interesting fact is that for �	2, the former are always more
widely distributed. A sketch of the calculation and some re-
sults are reported in Appendix B.

Finally, one can evaluate the scaling behavior of the ratio
of feedback and feedforward loops, which is given as

�Nffl�Gn��
�Nfbl�Gn��

� �
n�−1 if 1  �  2,

n/�ln n�2 if � = 2,

n3−� if 2  �  3,

ln n if � = 3,

� if � 	 3,
�

where �=3��−2�2��−3�−1��−1�−1	1. Thus, the ffls al-
ways dominate, although there is a wide range of regimes.
Note that the dominance of feedforward triangles is even
stronger if one considers the rectangular adjacency matrices
discussed above. For example, for 1�2 and rectangular

matrices, we calculate
�Nffl�Gn��

�Nfbl�Gn�� �n.

C. Roots and leaves

As a second example, we report the calculation of the
mean number of roots �nodes with only outgoing links� ver-
sus leaves �nodes with only incoming links�. More specifi-
cally, we say that i is a root if there is no edge of the kind
j→ i, but there is at least one edge of the kind i→ j, with j
� i. Loops do not count. Conversely, we say that i is a leaf if
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FIG. 4. �Color online� Comparison between analytical �dotted
lines� and numerical �triangles� evaluations of the mean number of
some observables as a function of system size n, for �=2.8, �=1.
Numerical averages are evaluated on 105 realizations. Top and
middle: mean number of three-node subgraphs. Each subgraph is
sketched next to its corresponding plot. Top: feedforward and feed-
back loops �ffl and fbl�. Middle: two kinds of open triangles, which
can be termed “single input modules” �sim� and “three-gene chains”
�tgc�. Bottom: roots and leaves.
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there is no edge of the kind i→ j, but there is at least one
edge of the kind j→ i, with j� i. Again we exclude loops and
isolated points. We find the following scaling for the number
of roots, R, and of leaves, L:

�L�Gn�� � n ,

while

�R�Gn�� � �n if � 	 2,

n1−� if � = 2,

e−�2n2−�
if 1  �  2,

�
where �2= �−1

2−���−1. Once again, we stress that these quanti-
ties are accessible analytically and there is perfect agreement
between the data generated by the algorithm and the calcu-
lations.

D. Hub

As a last example of important observable in our graph
ensemble, we discuss the distribution and mean number of
hubs. The so-called hub is the node having maximal out-
degree among the nodes—that is, Hnªmaxi=1,. . .,mn

�Sn,i�.
Once again, it is possible to give an analytical expression of
the limit law of the hub under a suitable rescaling. Indeed, by
stochastic independence, it is clear that P�Hn�xbn�= �1
− P�Sn,i	xbn��mn, where x	0 is any positive number. More-
over, it is not too hard to prove that, for suitable choices of bn
and mn, P�Sn,i	xbn�=1/mn��� /x��−1+o�1��. More pre-
cisely, for ��2 and for every positive number x,

P�Hn/bn � x� � e−��/x��−1
.

The above expression gives the effective probability distri-
bution that one can use for the hub out-degree in the
asymptotic limit. In particular, for �	2, mn=n and bn
=n1/��−1� and, with some work, we prove that �Hn�
�n1/��−1�, as found in �11�. For �=2, one has to take mn
=bn=n / ln n, which leads to analogous scaling results. Fi-
nally, for 1�2 and mn=n�−1, one gets the expression

P�Hn/n � x� � e−��/x��−1
��0,1��x� + ��1,���x�

for every positive x. Note that in this last case the probability
of finding a hub of size n is asymptotically finite and equal to
1−e−����−1

. This concentration effect was already noted in
�11� using a different random graph model, without comput-
ing explicitly the asymptotic probability distribution. It is
worth recalling that e−�� / x��−1

I�0,+���x� is the Frechet type-II
extreme value distribution—i.e., one of the three kinds of
extreme value distributions that can arise from limit law of
maximum of independent and identically distributed random
variables �see, for instance, �12��. For extreme values distri-
butions in scale-free network models see, e.g., �13�.

IV. OTHER APPLICATIONS

While here we restricted our attention to the case of di-
rected graphs with compact in-degree and power-law out-

degree, our coin-toss method of generating exchangeable
graphs is more general and has a wider range of application.
For example, one can consider the following algorithm: �i�
throw a bias � from a prescribed probability distribution �n
and �ii� set all the elements of A to be 0 or 1 according to the
toss of a coin with bias �. The resulting probability law, for
square matrices, is

Q�xi,j = ei,j;i, j = 1, . . . ,n�

= 	
�0,1�

�
i,jei,j�1 − ��n2−
i,jei,j�n�d�� ,

ei,j being any element in �0,1�, i , j=1, . . . ,n. Again set �n

ªQ�xi,j
�n�=1�=��0,1���n�d��. The resulting ensemble of ran-

dom graph has a large variability in the number of links. In
the n�n case, the degree distributions are given by Q�Sn,i

=k�=Q�Zn,j =k�= � n
k

���0,1��
k�1−��n−k�n�d��. Assuming Eq.

�2� one gets

Q�Sn,j = k� � Q�Zn,i = k� � p�,��k� ,

which has, again, a power-law tail. For this model, quantities
like the mean number of subgraphs, roots, leaves, and hubs
are again easily computed analytically in the same way we
described above. Furthermore, throwing a triangular matrix
with the same algorithm, one can easily generate a power-
law model for undirected graphs. Finally, variants of the
model can be generated by changing the probability distribu-
tion �n for the biases. Overall, all these possibilities remain
open to explore and could be useful to generate both analyti-
cally solvable random graph models and quicker algorithms
in many applications.

V. EXAMPLE OF COMPARISON
WITH EMPIRICAL DATA

A detailed comparison between known real transcriptional
networks and the null models obtained with our coin-toss
algorithm is beyond our aims here. Nevertheless, to show
that our model can be used for direct statistical comparisons,
as an alternative to the more stringent constraint of preserved
degree sequences, we present here a brief application to the
Shen-Orr �27� data set for the E. coli transcription network.
Motif discovery, for example, entails comparing the occur-
rence of subgraphs in a real network with a null ensemble.
This null ensemble can be obtained from our coin-toss
model, with some prescribed parameter set. The parameters
can be chosen by performing a fit of the model graphs with
some observed features of the data, such as, for example,
decay of the degree distributions and number of regulatory
elements �additional parameters can also be introduced if
needed�. The chosen “invariants” can be motivated biologi-
cally.

We generated our random ensemble with distribution �n
given by �3� as follows. First, from a frequentistic estimate
of �n we determined the probable value of � and of the
cutoff on the maximum—i.e., �. This last quantity has to be
regarded as a biological constraint and is necessary to obtain
an ensemble having on average the same number of links as
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the empirical one; we measure the upper cutoff 1−� /n to be
about 18 %. The estimated value for � ranges from 1.6 to
2.1, depending on the binning of the histogram of �n���. We
note that these values are larger than those obtained from
fitting direcly on the out-degree sequence. As a second step,
we fixed the rectangularity of the matrix with the ratio of
transcription factors to total number of nodes, choosing �
such that mn /n�0.2766. Finally, we fitted � to reproduce on
average the observed number of links and nodes. In practice,
since the model naturally produces a certain number of iso-
lated nodes, one has to generate slightly larger matrices and
compare the submatrix made of nonisolated nodes.

The ensemble obtained with this procedure fits quite well
the empirical in- and out-degree sequences �Fig. 5�a��. Also,
the model reproduces the empirical number of transcription
factors, roots, and leaves as average values. As a remark, we
note that, unless new prescriptions for the generation of the
graphs, and thus new parameters, are introduced, roots,
leaves, and transcripiton factors cannot be reproduced well
with smaller values of � than the ones we used. One can take
this as a confirmation that the range of values for the expo-
nent obtained with our fitting procedure are reasonable.

We also measured the three-node subgraph content of the
null model and compared it with the empirical data, and the
model ensembles are very close �Fig. 5�b��. The only excep-
tion is the ffl, with a slight deviation, which, however, is
much less significant than with the degree-conserving en-
semble. Thus, in terms of these observables, one obtains
similar graphs as the empirical one. This means that in the
resulting ensemble the average motif content can be regarded
as an invariant, rather than as an observable. Finally, we
quantified the feedback properties �Fig. 5�c��. In order to do
this, we measured the number NC of nodes left in the graph
after pruning its input and output treelike components with
an iterative decimation algorithm �28,29�. In particular, none
of the graphs we generated was treelike and feedforward as
the empirical one. One may then speculate that the motif
content and the hierarchical properties, two important prop-
erties, are somehow related.

VI. CONCLUSIONS

We presented an algorithmic way to generate directed
graphs with, asymptotically, power-law out-degree and com-
pact in-degree, easily generalizable to different kinds of
graphs. The discussion was carried out having in mind an
application in the realm of transcription networks, although
there are many possible connections with other experimen-
tally accessible complex networks, including biological ones.
Compared to other techniques, our model has the advantage
of being quick in generating large graphs, as it is not de-
signed to preserve a prescribed degree sequence, but rather to
generate an ensemble with given degree distributions. As
such, it is an interesting tool to characterize topological ob-
servables in large graphs. Most importantly, many of the rel-
evant observables are accessible analytically for any value of
n. We supplied here as an example the evaluation of the
mean number of subgraphs, roots and leaves, and hub.

We should add here a comment regarding the fact that it is
not evident than the proposed approach is more efficient than
the Molloy-Reed algorithm �20�, which generates “stubs”
with desired in- and out-degree sequences and matches the
stubs to generate the graphs. The latter model could be recast
to be similar in spirit, in the sense that one could fix the
relevant distributions depending on parameters, and throw
the degree sequences from the distributions. Once the num-
ber of connections for each node has been drawn from the
expected degree distribution and without avoiding multiple
connections, the computational cost of pairing the stubs is
order E �number of edges�, so in sparse networks this could
be less than order n2 and in nonsparse networks it could be
n2. Despite the fact that the algorithm suffers from the un-
desired production of multiple edges, due to the computa-
tional complexity of pairing hubs, for a compact in-degree
distribution, this computational cost can be small �30�, al-
lowing a practical applicability in some regimes. On the
other hand, we think that our approach remains competitive,
as its computational cost is not affected by the complexity of
the graph ensemble and, as we have shown, is very versatile
for analytical calculations.

Regarding the subgraph structure, we note that while ffls
always dominate fbls, there are qualitatively different behav-
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FIG. 5. �Color online� Application of the model to the Shen-Orr
data set. Example of fit and observed features. The plots refer to the
parameter set �=1.83, �=0.5, and mn /n=0.2766, with a cutoff on
the maximum out-degree at 18 % of the nodes as described in the
text. �A� In- and out-degree histograms of the empirical graph, com-
pared to the random ensemble. While the tail of the out-degree may
not seem a good fit, we note that the integrals of the 	13 tail, or the
estimated number of “global regulators,” of the two laws are re-
markably similar �8 in the empirical graph vs 9.7 in the randomized
network� so that this has to be regarded as a good agreement. �B�
Table comparing the subgraph content �for the three-node sub-
graphs analyzed here� of the model graphs with the empirical one.
The two quantities are in general very similar, with the exception of
the ffl, which deviates from average, but only slightly. �C� The
feedback in the graph deviates from average more than the triangu-
lar subgraphs. Left panel: the distribution of ffls compared with the
empirical value. Right panel: the feedback of the random and em-
pirical graphs differ. NC measures the number of nodes left in a
graph after pruning the input and output trees, as described in �28�.
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iors depending on the exponent �. The most marked domi-
nance is found for smaller values of � and is further in-
creased by considering rectangular matrices �i.e.,
asymptotically compact in-degree�. Thus, the degree distri-
bution poses some important constraints on the dominant
subgraphs in our null model. We would like to spend a few
more words on these scaling laws with system size n. In our
model the scaling of �n with the decay exponent � pilots the
transitions of all the observables. In particular, it renders it
necessary to consider rectangular matrices to obtain an as-
ymptotically compact in-degree if ��2.

This behavior is interesting on theoretical grounds and
shows how much the distributions for the in- and out-degree
in transcription networks are strongly unbalanced. For ex-
ample, in the model described in Sec. IV, where the in-
degree is allowed to have a power-law tail, the situation is
rather different. In the case of transcription networks, there is
an observed scaling law of the fraction of transcription fac-
tors �nodes that have at least one outgoing link�. This is a
power law n� �31� with positive exponent 1�2. Looking
at the distribution of roots, one easily realizes that this be-
havior forbids any asymptotic limit assuming the graph
structure of our model and is thus incompatible with it. In
light of our calculations, we can observe that it is likely that
for larger values of n the out-degree ceases to follow a power
law and/or the average in-degree ceases to be finite, the op-
posite trend to that observed in small networks. Experimental
observations of larger transcription networks will elucidate
this question.

We should stress here that the above considerations apply
mainly to the model. Nevertheless, we showed that in prin-
ciple our model can be used for direct statistical compari-
sons, as an alternative to the more stringent constraint of
preserved degree sequences. An example of such a fitting
procedure produced an ensemble of networks that resembles
the empirical one of E. coli in terms of degree distribution,
number of links, roots, leaves, and transcription factors. In-
terestingly, the null ensemble produced this way also has a
very similar three-node subgraph content as the empirical
graph. On the other hand, the feedback properties are very
different. The outcome of such a comparison might depend
on the invariance criteria used for the fitting. This is an in-
teresting feature that can be used to produce flexible null
models, depending on the quantities of interest. On the other
hand, this feature makes the handling of the model more
delicate than the standard degree-conserving randomizations.
In particular, a more exhaustive analysis than that presented
here is needed to draw clearcut conclusions on experimental
graphs �32�. Clearly, the degree sequences of, for example,
the E. coli network are not stringently fixed by any physical
of biological constraint. Rather, the network, during evolu-
tion �and within a population�, moves in a larger “space of
possible interactions,” determined by selective pressure and
other biological constraints, which has not been strictly iden-
tified yet. Generalizations of our null model might help in
exploring this evolutionary problem.

Finally, we showed how the coin-toss algorithm, or ex-
changeable graph model, has a wider range of application
than the main example examined here. To illustrate this, we
explained how, with the same technique, one can obtain di-

rected and undirected power-law random graphs. Obviously,
the range of possibilities is even larger if one starts to play
with the probability distribution for the biases �n�d��. For
this reason, on more abstract grounds, the model can be use-
ful in the context of the theory of correlated random net-
works �22,33�. It is a quick algorithm easy to implement and
to analyze theoretically. Indeed, because of its simple formu-
lation, the potential for further analytical calculations is
large. For example, one can evaluate the kernel of A, which
is useful in connection with problems of the satisfiability
class, which have seldom been analyzed on non-Poisson ran-
dom graphs �34–37�.

APPENDIX A: AVERAGE OF ffl

This appendix reports in more detail the calculation of the
mean number of ffls for 1�2. Starting from the defini-
tion, we obtain with straightforward calculations

�Nffl�Gn�� = 6n

3
� �� − 1�2

��n/���−1 − 1�2	
�/n

1

�2−�d�	
�/n

1

�1−�d�

=
�2�−2�� − 1�

�3 − ���2 − ��
n5−2��1 −

3

n
+

2

n2�
� �1 − �

n
�3−�

− �

n
�2−�

+ �

n
�5−2�� .

Note that, since the finite-n formula for the mean is known
exactly, the finite-size scaling can be computed analytically,
simply by isolating the leading terms in the approach to the
asymptotic limit. For example, in the case of the ffl average
computed above, one has

�Nffl�Gn�� =
�2�−2�� − 1�

�3 − ���2 − ��
n5−2�

� �1 − �

n
�2−�

+ o 1

n2−��� .

APPENDIX B: VARIANCE OF fbl vs ffl

We report here the calculation of the standard deviation of
feedforward and feedback loops in the case of square matri-
ces. The key point is to evaluate �Nffl�Gn�2� and �Nfbl�Gn�2�.
Again, for the sake of simplicity, we will deal only with
square matrices. It is clear that �Nfbl�Gn�2�=
t��
s��P�s , t
�Gn�, � being the set of all feedback loops contained in the
complete n graph. Analogously one obtains �Nfll�Gn�2� tak-
ing as � the set of all feedforward loops. Simple calculations
give

�Nfbl�Gn�2� = 4n

3
�n − 3

3
��n

6 + 12n

3
�n − 3

2
��n

2�2,n

+ 6�n − 3�n

3
���n

3 + �n
2�2,n

2 � + 2n

3
��n

3,

where �i,nª�0
1�i�n�d��. Hence, one obtains
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var„Nfbl�Gn�… ��
n5�2−�� if 1  �  2,

�ln n�4 if � = 2,

1

3
�

� − 1

� − 2
�3

if � � 2. �
As for Nffl, the computations are longer, but essentially the
same. The problem is that P�s , t�Gn� can take many differ-
ent expressions depending on s and t. With some simple but
tedious calculations one gets

�Nffl�Gn�2� = 6n

3
�An + 6�n − 3�n

3
�Bn + 12n

3
�n − 3

2
�Cn

+ 36n

3
�n − 3

3
�Dn,

with An=�1,n�2,n+�2,n
2 +�1,n

2 �2,n, Bn=�2,n�3,n+5�1,n�2,n
2

+3�1,n
2 �3,n+�3,n

2 +2�1,n�2,n�3,n+2�2,n
3 +4�1,n

2 �2,n
2 , Cn

=2�1,n�2,n�3,n+�1,n
2 �4,n+5�1,n

2 �2,n+�2,n
3 , and Dn=�1,n

2 �2,n
2 .

Hence,

var„Nffl�Gn�… = 6n

3
�An + 6�n − 3�n

3
�Bn

+ 12n

3
�n − 3

2
�Cn − 36RnDn,

with Rn= �� n
3

�− � n−3
3

��. For example, if 2�3, the last ex-
pression gives

var„Nfll�Gn�… � n2��+1�.
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